RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)	
FIRST YEAR [2019-22] B.A./B.Sc. FIRST SEMESTER (July – December) 2019	
Mid-Semester Examination, September 2019	
Date : 18/09/2019 COMPUTER SCIENCE (General)	
Time : 11 am - 12 noon Paper: I	Full Marks : 25
[Use a separate Answer Book for each group]	
<u>GROUP – A</u>	
Answer <u>any one</u> from question nos. <u>1 & 2</u> : 1 Deduce the following compression using K maps	(1×2.5)
1. Reduce the following expression using K-map:	
$\mathbf{F} = \Pi(2, 8, 9, 10, 11, 12, 14)$	[2.5]
2. Differentiate between the following terms:	
a) Primary memory and Secondary memory.	[1.5]
b) Von Neumann Architecture and Harvard Architecture.	[1]
Answer any two from question nos. <u>3 to 5</u> :	(2 × 5)
3. a) Encode data bits 1101 into 7-bits even parity hamming code.	[3]
b) Subtract $(111.111)_2$ from $(1010.01)_2$	[2]
4. a) Using only NAND gate, implement OR gate.	[2.5]
b) Convert $(108.32)_{10}$ to binary.	[2.5]
5. a) Why Gray code is a reflective code?	[2]
b) Perform the BCD subtraction : 109.8-92.5	[3]
<u>GROUP – B</u>	
Answer any one from question nos. <u>6 and 7</u> :	(1 × 2.5)
6. Explain combination logic circuit.	[2.5]
7. Why is Decoder known as 'Minterm Generator'?	[2.5]
Answer any two from question nos. 8 to 10:	(2×5)
8. a) While designing Adder, only three inputs are taken into consideration at most. Explain wh	ny. [3]
b) What kind of Adder will you use to add two binary numbers of 4-bits each.	[2]
9. a) Implement the following expression using Multiplexer:	
$F(A, B, C, D) = \sum (1, 2, 4, 7, 6, 8, 10, 15)$	[3]
b) What do you mean by Code Converter?	[2]
10. Design a 4-bits Magnitude Comparator.	[5]

(1)

×